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Abstract

Heterogeneous network embedding (HNE) is a chal-
lenging task due to the diverse node types and/or
diverse relationships between nodes. Existing HNE
methods are typically unsupervised. To maximize
the profit of utilizing the rare and valuable super-
vised information in HNEs, we develop a novel
Active Heterogeneous Network Embedding (Ac-
tiveHNE) framework, which includes two compo-
nents: Discriminative Heterogeneous Network Em-
bedding (DHNE) and Active Query in Heteroge-
neous Networks (AQHN). In DHNE, we introduce
a novel semi-supervised heterogeneous network em-
bedding method based on graph convolutional neu-
ral network. In AQHN, we first introduce three
active selection strategies based on uncertainty and
representativeness, and then derive a batch selec-
tion method that assembles these strategies using a
multi-armed bandit mechanism. ActiveHNE aims at
improving the performance of HNE by feeding the
most valuable supervision obtained by AQHN into
DHNE. Experiments on public datasets demonstrate
the effectiveness of ActiveHNE and its advantage
on reducing the query cost.

1 Introduction
Networks are pervasive in a wide variety of real-world scenar-
ios, ranging from popular social networks, to citation graphs
and gene regulatory networks. Network embedding (NE), also
known as network representation learning (NRL), enables us
to capture the intrinsic information of the network data by
embedding it into a low-dimensional space. Effective NE
approaches can facilitate downstream network analysis tasks,
such as node classification, community discovery, and link
prediction [Cai et al., 2017b].

Heterogeneous information networks (HINs), which in-
volve diverse node types and/or diverse relationships between
nodes, are ubiquitous in real-world scenarios [Shi et al.,
2017]. Although NE for homogeneous networks with sin-
gle type of nodes and single type of relationships has been
extensively studied [Tang et al., 2015; Wang et al., 2016;
Cai et al., 2017b; Goyal and Emilio, 2018], the rich structure
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Figure 1: The architecture of ActiveHNE. ActiveHNE consists of
two components: Discriminative Heterogeneous Network Embed-
ding (DHNE) and Active Query in Heterogeneous Networks (AQHN).
In each iteration, once a network embedding is obtained by DHNE,
AQHN selects the most valuable nodes to be queried, and then up-
dates DHNE with the new labels.

of HINs presents a major challenge for heterogeneous net-
works embedding (HNE), since nodes in different types should
be treated differently (Challenge 1) [Chang et al., 2015;
Fu et al., 2017; Dong et al., 2017; Shi et al., 2018b;
Chen et al., 2018].

Most of the current HNE approaches are unsupervised. One
can improve the performance of HNE by properly leverag-
ing supervised information (Challenge 2). However, label
acquisition is usually difficult and expensive due to the in-
volvement of human experts (Challenge 3). For Challenge 3,
active learning (AL), a technique widely used to acquire labels
of nodes during learning, can be adopted to save cost. The se-
lection of labeled data for model training can have significant
influence on the prediction stage. AL is expected to find the
most valuable nodes to label with reduced query cost [Settles,
2009]. However, since nodes in a heterogeneous network are
not independently and identically distributed (non-i.i.d.), but
connected with links, AL with networks should account for
data dependency. In addition, for HINs, the different node
types should also be considered.

Based on the high efficiency of graph convolution networks
(GCNs) [Kipf and Welling, 2017] in utilizing label informa-
tion, we propose a novel Active Heterogeneous Network Em-
bedding framework (called ActiveHNE) to address the above
three challenges. ActiveHNE includes two components, Dis-
criminative Heterogeneous Network Embedding (DHNE) and
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Active Query in Heterogeneous Networks (AQHN), as ill-
strated in Figure 1. They are described below.

• In DHNE, we introduce a semi-supervised discrimina-
tive heterogeneous network embedding method based
on graph convolutional neural networks. Since differ-
ent types of nodes and relationships should be treated
differently, we first decompose the original HIN into ho-
mogeneous networks and bipartite networks. For each
convolutional layer, DHNE separately learns the deep
semantic meanings of nodes in each obtained network,
and then concatenates the output vectors of each node
from all networks.

• In AQHN, besides the network centrality, we introduce
two active selection strategies, namely convolutional in-
formation entropy and convolutional information density
for HINs with respect to uncertainty and representative-
ness. In particular, these strategies take advantage of the
dependency among nodes and the heterogeneity of HINs
by using local convolution, whose filter parameters are
defined by the node importance (meassured by the num-
ber of node types of neighbors and the degree). Then,
we iteratively query the most valuable batch of nodes
by combining the three strategies using the multi-armed
bandit mechanism [Sutton and Barto, 1998].

This work makes the following contributions. (i) We for-
malize the active heterogeneous network embedding problem,
whose objective is to seek the most valuable nodes to query
and to improve the performance of HNE using the queried
labels. (ii) We present a novel heterogeneous graph convolu-
tional neural network model for node embedding and node
classification. (iii) Considering the data dependency among
nodes and the heterogeneity of networks, we propose a new
active learning method to select the most valuable nodes to
label by leveraging local convolution and the multi-armed ban-
dit mechanism. Experimental study on three real-world HINs
demonstrate the effectiveness of ActiveHNE on embedding
HINs, and on saving the query cost.

2 Related Work
Most of the previous approaches on HNE are unsupervised
[Shi et al., 2018b; Chang et al., 2015; Gui et al., 2017; Xu et
al., 2017]. Recently, methods have been proposed to leverage
meta-paths, either specified by users or derived from additional
supervision [Fu et al., 2017; Dong et al., 2017; Shi et al.,
2018a]. However, the choice of meta-paths strongly depends
on the task at hands, thus limiting their ability of generalization
[Shi et al., 2018b]. In addition, they enrich the neighborhood
of nodes, resulting in a denser network and in higher training
costs [Perozzi et al., 2014].

Graph neural networks (GNNs) are another widely studied
approach to leverage supervision [Zhou et al., 2018]. GNNs
have the ability to extract multi-scale localized spatial fea-
tures, and compose them to construct highly expressive rep-
resentations. Among all GNN approaches, graph convolution
networks (GCNs) play a central role in capturing structural
dependencies [Wu et al., 2019; Kipf and Welling, 2017]. A
comprehensive survey of the literature shows that the majority

of current GNNs are designed for homogeneous networks only.
GNNs are rarely explored for heterogeneous networks [Zhang
et al., 2018], and they are trained based on discretionary su-
pervision.

One can improve the embedding performance by acquiring
the labels of the most valuable nodes via AL. However, AL
on non-i.i.d. network data is seldom studied. In addition, the
diversity of node types in HINs makes the query criterion
of AL even harder to design. Although attempts have been
made to improve the embedding performance by incorporating
AL, they neither consider the dependence between nodes, nor
the heterogeneity of networks [Zhang et al., 2017; Cai et al.,
2017a; Li et al., 2018].

3 The ActiveHNE Framework
In this section, we present our Active Heterogeneous Network
Embedding framework, called ActiveHNE. The architecture
of ActiveHNE is given in Figure 1. ActiveHNE consists of two
components: Discriminative Heterogeneous Network Embed-
ding (DHNE) and Active Query in Heterogeneous Networks
(AQHN), which are elaborated in the following subsections.

3.1 Discriminative Heterogeneous Network
Embedding (DHNE)

It’s difficult to perform convolutions on networks due to the
lack of an Euclidean representation space. In addition, HINs
involve different types of nodes and relationships, each requir-
ing its own processing, and further increasing the challenge
of computing convolutions. To address this issue, we first
divide the original HIN into homogeneous networks and bipar-
tite networks (the latter involving two types of nodes). After
that, for each convolutional layer in a layer-wise convolutional
neural network, we separately convolves and learns the deep
semantic meanings of nodes in each obtained network, and
then concatenates the output vectors of each node from all
networks.

Let {Gt|t = 1, 2, · · · , T} be the collection of obtained ho-
mogeneous networks and bipartite networks, and {At|t =
1, 2, · · · , T} denotes the adjacency matrices corresponding to
{Gt}. The spectral graph convolution theorem defines the con-
volution in the Fourier domain based on the normalized graph
Laplacian Lt = It −D

− 1
2

t AtD
− 1

2
t = D

− 1
2

t (Dt −At)D
− 1

2
t ,

where It is the identity matrix and Dt = diag(
∑
i At(i, j))

denotes the degree matrix [Kipf and Welling, 2017; Wang et
al., 2018].

Since the nodes’ degree distribution in an HIN may vary
greatly, and the interaction between two connected nodes may
be directed, an asymmetric matrix Pt = D−1

t At, instead
of the symmetric Lt, is more suitable to define the Fourier
domain. Pt is the transition probability matrix.

In this paper, we separately convolve on each obtained
network using the transition probability matrix Pt as Fourier
basis. Specifically, let Pt = ΦtΛtΦ

−1
t , where Λt and Φt are

the eigenvector matrix and the diagonal matrix of eigenvalues
of Pt, respectively. The convolution on each obtained network
is defined as follows:

gθt ?Xt = gθt(Pt)Xt = gθt(ΦtΛtΦ
−1
t )Xt

= Φtgθt(Λt)Φ
−1
t Xt

(1)



where Xt ∈ RNt×D is the input signal of the network Gt (Nt
and D denote the number of nodes and the number of features
of each node in Gt, respectively). gθt ?Xt gives the product
of the signal Xt with a filter gθt in the graph Fourier domain,
which denotes the output of graph convolution. Φ−1

t Xt is
the Fourier transform of signal Xt. More details about the
spectral graph convolution in the Fourier domain can be found
in [Wang et al., 2018].

To convolve the local neighbors of the target node, we define
gθt(Λt) as a polynomial filter up to K order [Defferrard et al.,
2016; Zhang et al., 2018] as follows:

gθt(Λt) =

K∑
k=1

θtkΛ
k (2)

where θt ∈ RK is a vector of polynomial coefficients. Thus,
we have:

gθt ?Xt = Φt(

K∑
k=1

θtkΛ
k
t )Φ−1

t Xt =

K∑
k=1

θtkP
k
tXt (3)

From Eq. (3), the convolution on Gt only depends on the
nodes that are at most K steps away from the target node. In
other words, the output signals after convolution operations
are defined by a K-order approximation of localized spectral
filters on networks. The filter parameters θtk can be shared
over the whole network Gt. Moreover, we generalize Eq. (3)
to D × d filters for feature maps, i.e., we map the original
feature dimension D to d. Thus, the convolution operation on
network Gt is formalized as follows:

Ht = σ(

K∑
k=1

Pk
tXtΘt) (4)

where Θt ∈ RD×d and Ht ∈ RNt×d denote the matrix of fil-
ter parameters (the trainable weight matrix) and the convolved
signal matrix (output signals), respectively. We use ReLU(·)
for σ(·) as the activation function.

So far, we have performed the convolutions separately on
each individual network. To leverage both the homologous
and heterogeneous information of HINs for embedding, we
then concatenate in order the vectors of the convoluted signals
to obtain the final output signals for each node, according to
the network it belongs to. For a node that is not an element of
a network, we use a zero vector to represent the corresponding
output signals. Let Zt denote the concatenated convoluted
signals of nodes in Gt, we define the layer-wise convolution
on Gt as follows:

H
(l)
t = σ(

K∑
k=1

Pk
tZ

(l)
t Θ

(l)
t ), l = 0, 1, 2, ... (5)

where Z
(l)
t ∈ RNt×Td(l−1)

, Θ
(l)
t ∈ RTd(l−1)×d(l)

, and H
(l)
t ∈

RNt×d(l)

denote the activations (input signals), the matrix of
filter parameters (the trainable weight matrix), and the con-
volved signal matrix (output signals) in the l-th layer, respec-
tively. d(l) is the embedding dimension of the l-th layer, and
T is the number of networks. Specifically, Z

(0)
t = Xt and

Θ
(0)
t ∈ RD×d(1)

. Eq. (5) indicates the layer-wise propagation
rule in layer-wise convolutional neural networks. Although
we performed the convolutions separately on each individual
network, both the homologous and heterogeneous information
of HINs are used for the embedding thanks to the layer-wise
concatenation operators.

After β layers of convolutions and concatenations, we ob-
tain the final output vectors of all nodes as E = Zβ ∈
RN×Td(β)

. To obtain a discriminative embedding, we lever-
age supervision (i.e., label information) by adding a fully
connected layer to predict the labels of nodes as follows:

F = σ(EΘpre) (6)

where Θpre ∈ RTd(β)×C is the hidden-to-output weight ma-
trix). F ∈ RN×C , and Fic stores the probability that the
i-th node belongs to class c. The activation function σ(·) in
the last layer is the softmax function, which is defined as
softmax(Fic) = exp(Fic)∑C

c′=1
exp(Fic′ )

Finally, the supervised loss
function is defined as the cross-entropy error over all labeled
nodes as follows:

loss = −
L∑
i=1

C∑
c=1

YiclnFic (7)

where Y ∈ {0, 1}N×C stores the ground-truth labels of nodes.
If the i-th node is associated with the c-th label, Yic = 1. Oth-
erwise, Yic = 0. The neural network weight parameters Θ

(l)
t

and Θpre are optimized using gradient descent to minimize
Eq. (7). As such, Eqs. (6) and (7) enable a semi-supervised
model for discriminative node embedding. The label of the
i-th node can be predicted as yi = arg maxc Fic.

3.2 Active Query in Heterogeneous Networks
(AQHN)

In DHNE, we perform a semi-supervised heterogeneous net-
work embedding, which requires the participation of label
information. However, label acquisition is usually difficult
and expensive due to the involvement of human experts. More
importantly, different supervision may lead to different em-
bedding performance. To train a more effective DHNE, we
propose an active query component, AQHN, to acquire the
most valuable supervision within a given budget (e.g., the
allowed maximum number of queries).

Uncertainty and representativeness are widely used criteria
to select samples for query in AL. Uncertainty selects the sam-
ple that the current classification model is least certain, while
representativeness selects the sample that can well represent
the overall input patterns of unlabeled data. Empirical studies
have shown that combining the two criteria can make more effi-
cient selection strategies [Huang et al., 2014]. In the following,
we first introduce three active selection strategies (Network
Centrality, Convolutional Information Entropy, and Convo-
lutional Information Density) for HINs based on uncertainty
and representativeness. Then, we proposed a novel method to
combine these strategies to adaptively and iteratively select
the most valuable batch of nodes to query, by leveraging the
multi-armed bandit mechanism [Sutton and Barto, 1998].



Selection Strategy
Network centrality (NC). NC (e.g., degree centrality and
closeness centrality) [Freeman, 1978] is an effective measure
to evaluate the representativeness of nodes. In this paper, we
simply use degree centrality, which is defined as φnc(vi) =
|Ni|, to evaluate the centrality of nodes. Ni includes all the
direct neighbors of vi. Other measures of network centrality
in HINs will be studied later.

Nodes in an HIN are non-i.i.d. and are connected by links,
which reflect the dependency among nodes. Inspired by the
idea of spectral graph convolution that defines the convoluted
signal as a linear weighted sum of its neighbor signals, we
propose two novel active strategies to select nodes for query
in HINs based on a convolution of neighbors. We first define
the convolution parameters (i.e., the weight parameters) and
then the two selection strategies. Let wi = tanh(niN + mi

VT
) ∈

[0, 1) to quantify the importance of node vi. tanh(·) is the
hyperbolic tangent function. Here ni and mi represent the
number of neighbor nodes of vi and the number of node types
of these neighbors. N and VT are the total number of nodes
and node types in the whole network, respectively. A larger
value of ni or mi implies that more complex information is
conveyed by vi, and thus vi may be more important to its
neighbor nodes. In the following, we use wi as the weight
parameters for convolving neighbors.

Convolutional Information Entropy (CIE). Information
Entropy (IE) is a widely used metric to evaluate uncertainty.
In this paper, we evaluate the uncertainty of node vi using CIE
as follows:

φcie(vi) =
∑

vj∈{vi
⋃
Ni}

wj(−
C∑
c=1

Fjc log Fjc) (8)

The uncertainty of vi is a weighted sum of the uncertainties of
its neighbors and itself.

Convolutional Information Density (CID). The represen-
tativeness of nodes in the embedding space is also crucial to
measure the value of nodes. We apply k-means clustering on
the embedding to calculate the information density (ID) of
nodes, due to its high efficiency. The number of clusters for
k-means is simply set to the number of class labels. CID of vi
based on its neighbors is quantified as follows:

φcid(vi) =
∑

vj∈{vi
⋃
Ni}

wj
1

1 + dis(Ej , ϕ(vj))
(9)

where dis(·) is the distance metric (i.e., Euclidean distance) in
the embedding space, ϕ(vi) is the center vector of the cluster
to which vi belongs. Ej is the embedding of the j-th node.
ϕ(vj) and Ej belong to the same space.

The proposed CIE and CID measure the value (uncertainty
or representativeness) of a node based on the node itself and
its neighborhood nodes, while IE and ID are based on the node
only. Since nodes in networks are connected by links, CIE
and CID are more appropriate than IE and ID. We prove it in
Section 4.3.

Multi-Armed Bandit for Active Node Selection
We select the most valuable nodes by leveraging the above
three selection strategies. In particular, we study the batch

mode setting, in which we query b nodes in each iteration.
First, we select top b nodes with the highest φnc, φcie, and
φcid scores as the initial candidates of each selection strategy
in each iteration, respectively. To jointly select the most valu-
able b nodes from all selection strategies, one can evaluate the
score of each node by using the weighted sum of scores of
each strategy, where the weights capture the importance of
corresponding strategies. Then, the problem of active node
selection is transformed into the estimation of the importance
of each strategy. But the importance of each strategy is time-
sensitive and thus difficult to be specified [Cai et al., 2017a;
Li et al., 2018]. We introduce a novel method to adaptively
learn the dynamic weight parameters based on the multi-
armed bandit mechanism. The well-known multi-armed bandit
(MAB) problem is a simplified version of the reinforcement
learning problem [Sutton and Barto, 1998], which explores
what a player should do given a bandit machine with Λ arms
and a budget of iterations. In each iteration, an agent plays one
of the Λ arms to receive a reward. The objective is to maximize
the cumulative reward. Combinatorial MAB (CMAB) [Chen
et al., 2013], an extension of MAB, allows to play multiple
arms in each iteration.

Based on the idea of the CMAB, we can view each selection
strategy as an arm, and approximate the importance of each
strategy by estimating the expected reward (i.e., utility) of the
corresponding arm. Let Cλr be the initial candidate set of arm
λ in iteration r, and Qr be the actually queried set of nodes
in that iteration. Intuitively, the actual reward of arm λ can be
defined as:

µr(λ) = ψ(fLr
⋃
Qλr )− ψ(fLr ) (10)

where Lr is the available labeled set of nodes in iteration r.
Qλr = Cλr

⋂
Qr is the set of queried nodes that are dominated

by arm λ in iteration r. fLr is the classifier trained on Lr, and
ψ(fLr ) is the classification performance of fLr . We observe
that µr(λ) for the current iteration can’t be computed since
the ground-truth of Qλr is unavailable. The empirical reward
is typically used to estimate the expected reward of arms. But
computing the empirical µr(λ) of each arm in each iteration
is very time-consuming; as such, we estimate the empirical
reward of each arm using the local embedding changes of
nodes caused by the arm.

We first define the local embedding changes caused by arm
λ in iteration r as follows:

∆r(λ) =
∑
vi∈Qλr

∑
vj∈N (vi)

dis(Er
j ,E

r−1
j ) (11)

where dis(·) is the distance metric (e.g., Euclidean distance),
N (vi) is the neighbors of vi, and Er

j is the node embedding
of vj in iteration r. Eq. (11) measures the empirical reward
of arm λ in iteration r using the local embedding changes of
nodes caused by the arm λ, which equates to the embedding
changes of neighbor nodes of the nodes dominated by arm
λ (or Qλr ). This AL strategy aims to select nodes that result
in the greatest change to the embeddings when their labels
are available. The intuition is that one can view the magni-
tude of the resultant change of embeddings as the value of
purchasing the labels. If this magnitude of change is small,
then the labels do not provide much new information and has



a low value. To achieve a fair comparison and avoid bias,
the empirical reward of arm λ in iteration r is estimated as
µ̂r(λ) = ∆r(λ)

∆r(
⋃Λ
λ=1 λ)

, where ∆r(
⋃Λ
λ=1 λ) denotes the local

embedding changes caused by all arms (or Qr). Note that,
in iteration r, ∆r(

⋃Λ
λ=1 λ) ≤

∑Λ
λ ∆r(λ). The reason is that

there may be overlap between different Qλr . Due to the fact
that the importance of each selection strategy changes over
time, we use the average of the last two empirical rewards to
estimate the current expected reward as follows:

µ̄r(λ) =
µ̂r−2(λ) + µ̂r−1(λ)

2
(12)

To mitigate the exploration-exploitation dilemma of CMAB,
the combinatorial upper confidence bound algorithm [Chen et
al., 2013] estimates expected rewards based on the empirical
rewards and the number of times an arm is explored. In the

same way, we adjust µ̄r(λ) as µ̃r(λ) = µr(λ)+
√

3lnr
2nλ

, where
nλ denotes the total number of nodes queried by arm λ. This
adjustment can boost the expected reward of under-explored
arms to avoid dismissing a potentially optimal strategy without
sufficient evidences.

After this, to avoid selecting highly controversial nodes,
we estimate the expected reward of un-queried nodes vi ∈⋃Λ
λ=1 Cλr in iteration r using the weighted Borda count as

follows:

µ̃∗r(vi) =

Λ∑
λ=1

µ̃r(λ)(b− rankλr (vi)) (13)

where rankλr (vi) ∈ [1, b] is the rank order of node vi in arm
λ in iteration r (sorted in descending order of scores). Finally,
the top b nodes (from

⋃Λ
λ=1 Cλr ) with the highest µ̃∗r(vi) are

selected as the query batch Qr in iteration r.

4 Experiments
4.1 Experimental Setup
Datasets: we evaluate our ActiveHNE on three real-world
HINs extracted from DBLP1, Cora2, and MovieLens3. The
extracted DBLP consists of 14K papers, 20 conferences, 14K
authors, and 9K terms, with a total of 171K links. The ex-
tracted MovieLens includes 9.7K movies, 12K writers, 4.9K
directors, 0.6K users, and 1.5K tags, with a total of 140K links.
The extracted Cora has 25K authors, 19K papers, and 12K
terms, with 146K links.

Baselines: we compare ActiveHNE against the following
state-of-the-art methods and a variant of ActiveHNE that ran-
domly selects nodes to query (in a kind of naive AL setting):

• GCN [Kipf and Welling, 2017]: a semi-supervised net-
work embedding model, with no consideration of net-
works heterogeneity. To adapt GCN in AL setting, nodes
are randomly selected for query in each iteration (in naive
AL setting).

1https://dblp.uni-trier.de/db/
2http://web.cs.ucla.edu/ yzsun/data/
3https://grouplens.org/datasets/movielens/

• metapath2vec [Dong et al., 2017] and HHNE [Wang et
al., 2019]: two unsupervised HNE methods also adapted
in the naive AL setting.

• AGE [Cai et al., 2017a] and ANRMAB [Li et al., 2018]:
two active network embedding methods without consid-
ering the dependence between nodes and the heterogene-
ity of networks.

• DHNE: a variant of ActiveHNE that randomly select-
snodes to query in naive AL setting.

Tasks: We evaluate the performance of network embed-
ding using the Accuracy of node classification task. For the
DBLP dataset, we classify author, paper, and conference nodes
into four research area: {Data Mining, Database, Information
Retrieval, Artificial Intelligence}, with ground truth labels
obtained in the same fashion as in [Ji et al., 2011]. For the
Cora dataset, after preprosessing, we classify paper nodes
into ten research area {Information Retrieval, Databases, Ar-
tificial Intelligence, Encryption and Compression, Operating
Systems, Networking, Hardware and Architecture, Data Struc-
tures Algorithms and Theory, Programming, Human Com-
puter Interaction}. For MovieLens dataset, the movie nodes
are classified into three genres {Action, Romance, Thriller},
with each node belonging to a single genre to satisfy the single
label condition.

For the proposed DHNE and ActiveHNE, we simply set
K = 1 for comparative evaluation, and investigate K in Sec-
tion 4.4. We train DHNE using a network with two convolu-
tional layers and one fully connected layer as described in Sec-
tion 3.1, with a maximum of 200 epochs (training iterations)
using Adam. The dimensionality of the two convolutional
filters is 16 and C, respectively. We use an L2 regulariza-
tion factor for all the three layers. The remaining parameters
are fixed as in GCN [Kipf and Welling, 2017]. For metap-
ath2vec and HHNE, we apply the commonly used meta-path
schemes “APA” and “APCPA” on DBLP and Cora, and we use
“DMTMD” and “DMUMD” on MovieLens to guide metapath-
based random walks. The walk length and the number of
walks per node are set to 80 and 40 as in HHNE, respectively.

Following the experimental settings in [Kipf and Welling,
2017], we randomly divide the labeled nodes into three parts:
the training set (25% of the labeled nodes), the validation set
(25% of the labeled nodes for hyperparameter optimization in
DHNE), and the remaining as the testing set. For AL settings,
the training set is used as the unlabeled pool (U ). All the com-
paring methods in AL settings iteratively query the labels of
the selected batch of nodes from U , and then add these queried
nodes with labels into L (the set of labeled training nodes).
For a fair comparison, we use the proposed DHNE as the
basic embedding and classification method for all active learn-
ing methods (AGE and ANRMAB) in the experiments. The
non-AL methods (i.e., DHNE, GCN, metapath2vec, HHNE),
randomly select the nodes to label in each iteration of AL.
To evaluate the classification performance of metapath2vec
and HNNE, we train a logistic regression classifier using the
respective embedding of nodes. ActiveHNE can work with the
zero-start setting (i.e., no labeled nodes, L ⊆ ∅, at the begin-
ning of active learning) using φnc. AGE and ANRMAB can
operate in the same manner as ActiveHNE. In the following,

https://dblp.uni-trier.de/db/
http://web.cs.ucla.edu/~yzsun/data/
https://grouplens.org/datasets/movielens/
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(c) DBLP

Figure 2: Accuracy vs. number of iterations for all methods on the three datasets.

we run each method ten times and report the average results.

4.2 Comparison against State-of-the-art Methods
The goal of ActiveHNE is to improve the classification perfor-
mance with fewer queried nodes as much as possible. Figure
2 shows the accuracy of all the comparing methods on the
three datasets, as a function of the number of iterations. One
iteration corresponds to b nodes. We set the batch size b = 20
for Cora and MovieLens, and b = 5 for DBLP, to display the
difference in accuracy with respect to the number of iterations.

From Figure 2, we can make the following observations:
(i) Active vs. naive-active. ActiveHNE, an active method that
combines DHNE and AHQN, significantly outperforms naive-
active methods (DHNE, GCN, HHNE and metapath2vec),
which randomly select nodes for query. It proves that AL is
conducive to improve embedding for classification purpose.
(ii) ActiveHNE vs. other active methods. ActiveHNE out-
performs other AL-assisting methods (ANRMAB and AGE)
on MovieLens and Cora, and has comparable performance
with ANRMAB on DBLP. Since these three methods use the
same embedding module and only differ on the active learning
strategy, the superior performance of ActiveHNE validates the
effectiveness of our designed active query strategy. Although
ANRMAB and AGE are based on the same DHNE. They lose
to DHNE in most cases. That is because these methods don’t
consider the heterogeneity and dependency of nodes in HINs.
These results demonstrate the effectiveness of our proposed
AQHN for DHNE.
(iii) DHNE vs. other network embedding methods. DHNE
significantly outperforms the three representative network em-
bedding methods (GCN, HHNE and metapath2vec), when
they are all in naive-AL setting. This observation shows the
superiority of DHNE in embedding HINs for nodes classifica-
tion, and it also justifies the rationality of dividing HINs into
homologous networks and bipartite networks. The poor per-
formance of HHNE and metapath2vec may be caused by the
improper meta-path schemes and the sensibility of parameters
in metapath-based random walks.

We used the Wilcoxon signed-rank test over these three
datasets to evaluate the significance by dividing the Accuracy
curve of each comparing method in Figure 2 into 40 bins (each
bin corresponds to a batch of queried nodes during active
learning). The obtained p-values between ActiveHNE and the

comparing methods are all smaller than 5× 10−4, except that
the p-values for DHNE and ANRMAB on DBLP are 0.5908
and 0.0328, and the p-value for GCN on Cora is 0.0201. These
results prove the statistical significance of ActiveHNE in most
cases.

4.3 Effectiveness of Individual Selection Strategy
In Section 3.2, we use three node selection strategies: NC,
CIE and CID. The latter two are our proposed novel strategies.
To validate their effectiveness, we introduce five variants:

• ActiveHNE-nc only uses NC φnc;

• ActiveHNE-cie only uses the CIE φcie in Eq. (8);

• ActiveHNE-ie only uses the original information entropy
φie(vi) = −

∑C
c=1 Fic log Fic;

• ActiveHNE-cid only uses CID φcid in Eq. (9);

• ActiveHNE-id only uses the original information density
φid(vi) = 1

1+dis(Ei,ϕ(vi))
.

The same settings in Figure 2 are used, and results are
shown in Figure 3. From Figure 3, we can conclude the fol-
lowing:
(i) ActiveHNE achieves the best accuracy among its vari-
ants. Although ActiveHNE-cie also obtains the comparable
accuracy to ActiveHNE on Cora, it significantly loses to Ac-
tiveHNE on MovieLens. These results support the rationality
and effectiveness of ActiveHNE in combining three active
selection strategies, since one particular strategy cannot fit all
datasets.
(ii) ActiveHNE-cie and ActiveHNE-cid achieve a better ac-
curacy than ActiveHNE-ie and ActiveHNE-id, respectively.
This result corroborates the effectiveness of our proposed CIE
and CID in selecting the most uncertain nodes and most repre-
sentative nodes.

Likewise, we performed the Wilcoxon signed-rank test to
assess the significance between ActiveHNE and the other five
variants in Figure 3. The p-values for ActiveHNE with respect
to all comparing methods on MovieLens and Cora are all
smaller than 3× 10−6, except that the p-value for ActiveHNE
with respect to ActiveHNE-cie on Cora is 0.0044. All these
p-values show the superiority of ActiveHNE.

To intuitively show the importance of each selection strat-
egy during the AL process, we report the reward changes of



different strategies in Figure 4, where the initial reward of each
strategy is one. From Figure 4, we can see that the reward of
NC gradually reduces as the number of iterations increases.
The reason is that the embedding model doesn’t perform well
in the initial stage of AL because of scarce labels, and CIE
and CID depend on the outputs of the embedding model while
NC does not. At the beginning, NC contributes to reduce the
effect of the bias induced by CIE and CID. As the number of
iterations increases, CIE and CID become more reasonable
and thus the importance of NC decreases. We observe that
the sum of the rewards of NC, CIE, and CID is greater than
or equal to one. This is because the nodes selected by the
strategies overlap. Thus, the fact that the reward of NC goes
down doesn’t mean that the rewards of CIE and CID go up.
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Figure 3: Accuracy vs. number of iterations: ActiveHNE against its
four variants on MovieLens and Cora.
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Figure 4: Reward vs. number of iterations of the three selection
strategies on MovieLens and Cora.

4.4 Parameter sensitivity analysis of K
In the previous experimental setup, we simply set K = 1
for DHNE and ActiveHNE. It means that DHNE and Ac-
tiveHNE only consider the one-order neighborhood structures
of networks. In view of the importance of high-order neigh-
borhood structures in real-world networks, we equip DHNE
with different K values in the range {1, 2, 3} to investigate the
importance of order of neighborhood structure, and report the
average Accuracy of 10 independent runs in Figure 5. Particu-
larly, Figure 5 only reports the results of DHNE on MovieLens
(with K = 1, 2, 3) and Cora (with K = 1, 2). The reason is
that a larger K gives a more dense matrix PK , which requires
more space and computation, and results in running out of
memory.

From Figure 5, we can observe the following: i) On Movie-
Lens, DHNE achieves the best classification performance with
K = 1, and has reduced performance as K increases; ii) On
Cora, DHNE(K = 2) outperforms DHNE(K = 1). Thus, we
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Figure 5: Accuracy of ActiveHNE under different values of K on
MovieLens and Cora datasets.

can conclude that the optimalK values for DHNE on different
datasets are difficult to set uniformly. Still, DHNE can achieve
a good classification performance by simply setting K = 1
from Figure 2.

4.5 Runtime Analysis
ActiveHNE consists of two components, DHNE and AQHN.
We separately compare the runtimes of DHNE and AQHN
with those of the other methods (GNC, metapath2vec, and
HHNE for network embedding; AGE and ANRMAB for ac-
tive learning). Table 1 reports the empirical runtimes of the
methods on a server with Intel Xeon E5-2678v3, 256GB RAM,
and Ubuntu 16.04.4. Table 1 shows:
– for the NE part, DHNE is slower than GCN, but significantly
faster than metapath2vec and HHNE. DHNE divides the orig-
inal HINs into multiple sub-networks, and trains the model
parameters on each sub-network. As such, it optimizes more
parameters than GCN, despite the fact that both use graph
convolution-based network embedding.
– for the AL part, we admit that AQHN is slower than AGE
and ANRMAB, but actively acquired more effective nodes for
achieving better embedding results, as shown in Figure 2.

Table 1: Runtimes (in seconds).

MovieLens Cora DBLP Total

NE

DHNE 92 199 147 438
GCN 38 148 97 283
metapath2vec 172 720 694 1586
HHNE 893 13081 3180 17154

AL
AQHN 8 54 13 75
AGE 2 5 3 10
ANRMAB 1 6 2 9

5 Conclusion
In this paper, we studied how to achieve active discriminative
heterogeneous network embedding by optimally acquiring
and using labels of network nodes. The proposed framework
ActiveHNE extends graph convolution networks to heteroge-
neous networks by dividing the given network into multiple
homogeneous and bipartite sub-networks, and performing con-
volutions on these networks. Three different query strategies
based on convolutions are combined to query the labels of the
most valuable nodes, which are fed back for the next round
of discriminative network embedding. ActiveHNE achieves
a superior or comparable performance to other methods both
in terms of accuracy and efficiency. The code and the supple-
mental file of ActiveHNE will be made publicly available.
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